Deep Learning and Its application in Multimedia Retrieval

ZHIGUANG WANG

Roadmap

- > Introduction
- > Background of Stacked Auto-encoder
- Background of Convolutional Neural Network
- > Application in Image Retrieval
- > Application in Audio Retrieval
- Conclusion

Modern IR laid more emphasis, as well as effort on multimedia retrieval

- ► IR tasks boost W.R.T image and audio content
- Image Retrieval
- >Audio/Music Retreval
- Music Recommedation

Content based image retrieval

Content based Music retrieval

	Artists with positive values	Artists with negative values	
1	Justin Bieber, Alicia Keys, Maroon 5, John Mayer, Michael Bublé	The Kills, Interpol, Man Man, Beirut, the bird and the bee	
2	Bonobo, Flying Lotus, Cut Copy, Chromeo, Boys Noize	Shinedown, Rise Against, Avenged Sevenfold, Nickelback, Flyleaf	
3	Phoenix, Crystal Castles, Muse, Röyksopp, Paramore	Traveling Wilburys, Cat Stevens, Creedence Clearwater Revival, Van Halen, The Police	

> Modern IR intertwines with ML and statistics.

Inspires various methods for feature representation, language modeling, etc.

> Deep learning, new architecture

Learn abstract/extensible features for IR tasks

- > Is it possible to learn features without label?
- > SURE!
- Decompose and reconstruct itself!

Encode and decode

> code -> feature

Fine tune the final search results/classifier/predictor

> Fine tune the entire search model

- > Feature could be:
- bag-of-words
- > image pixels
- > meta data vector

Background - CNN

Convolution – extract features from multi-dimension

Convolved Feature

Background - CNN

> CNN – Weights sharing

Background - CNN

> CNN – layer structure

Application – SAE in IR

> Hinton, et al. 2011

256-bit deep

256-bit spectral

Euclidean distance

Application – SAE in IR

> Reconstruction of test images

Application – SAE in IR

≻ Result

Deep codes >> Euclidean distance >> spectral codes

Application – CNN in Music Retrieval

- Content based music Retrieval/Recommedation
- Extract MFCCs from the audio signals
- Vector quantize the MFCCs
- > Aggregate them into a bag-of-words representation
- Reduced the size of this representation using PCA (we kept enough components to retain 95% of the variance)
- > Bag-of -words

Application – CNN in Music Retrieval

> aforementioned time-frequency representation as input

> Rectifier linear units

$$f(x) = \max(0, x)$$

Application – CNN in Music Retrieval

> CNN- based methods – ROC curve reach to 0.7+

Model	mAP	AUC
MLR	0.01801	0.60608
linear regression	0.02389	0.63518
MLP	0.02536	0.64611
CNN with MSE	0.05016	0.70987
CNN with WPE	0.04323	0.70101

Conclusion

- > Deep Learning learn abstract features from unlabeled data
- > Integrate with IR techniques as input space
- Work well with state-of-the-art performance for multimedia retrieval

Thanks!

